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We present a fully second order implicit/explicit time integration technique for solving
hydrodynamics coupled with nonlinear heat conduction problems. The idea is to hybridize
an implicit and an explicit discretization in such a way to achieve second order time con-
vergent calculations. In this scope, the hydrodynamics equations are discretized explicitly
making use of the capability of well-understood explicit schemes. On the other hand, the
nonlinear heat conduction is solved implicitly. Such methods are often referred to as IMEX
methods [2,1,3]. The Jacobian-Free Newton Krylov (JFNK) method (e.g. [10,9]) is applied to
the problem in such a way as to render a nonlinearly iterated IMEX method. We solve three
test problems in order to validate the numerical order of the scheme. For each test, we
established second order time convergence. We support these numerical results with a
modified equation analysis (MEA) [21,20]. The set of equations studied here constitute a
base model for radiation hydrodynamics.

Published by Elsevier Inc.
1. Introduction

This paper presents a demonstrated fully second order implicit/explicit algorithm for solving hydrodynamics (e.g., con-
servation laws equations) plus nonlinear heat conduction (e.g., diffusion equation) problems. These equations can be
viewed as a model for radiation hydrodynamics. Radiation hydrodynamics models are used in astrophysics, inertial con-
finement fusion, and other high temperature flow systems, and they represent a classic multiphysics hydrodynamics prob-
lem. These problems are difficult to tackle numerically, since they exhibit multiple time scales. For instance, radiation and
hydrodynamics processes occur on time scales that differ from each other by many order of magnitudes. A common
numerical solution strategy is to employ a hybrid implicit/explicit discretization [3,5,12]. Generally, the hydrodynamics
part is treated explicitly, whereas an implicit method is applied to diffusion part. The motivation behind this hybridization
is that if one uses all explicit discretizations, then due to very stiff diffusion process the explicit time steps are often
impractically small to satisfy stability conditions [11]. Therefore it is often considered prudent to separate the diffusion
part and treat it implicitly.

This paper can be considered as an advancement to [3]. For instance [3] solves hydrodynamics part (refer to Eq. (4))
explicitly and presents/compares three different implicit strategies for the diffusion part (refer to Eq. (5)). The explicit dis-
cretization in [3] is based on a Godunov type upwinding method. The first implicit strategy in [3] is based on the implicit
Euler method and involves temperature linearization in the diffusion term. This is referred to as the classical operator splitting
algorithm. The scheme results in solving a system of linear equations. The time accuracy for this method is only first order.
The second approach is based on the implicit Euler discretization and involves no linearization. This results in a system of
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nonlinear equations which are solved based on the Jacobian-Free Newton Krylov (JFNK) method [10]. The overall time accu-
racy is still first order. In the third strategy, the Jacobian-Free Newton Krylov method is implemented within a Predictor–Cor-
rector framework. This employs a combination of the implicit Euler (prediction step) and the Crank–Nicolson method
(correction step) [21]. The third method was an attempt to achieve second order time accuracy. Although it exhibits second
order convergence for pure diffusion problems, it fails to be second order accurate when considering the hydrodynamics
effects.

In all of the three implicit methods in [3], the hydrodynamics part is solved outside of the implicit block. This leads to
operator splitting with un-converged nonlinearities. In other words, the hydrodynamics part has no, or limited, influence
from the nonlinear iterations and vise versa. As a result, the nonlinearities in the coupled system are not converged com-
pletely. We note that the early IMEX methods [2,1] which are designed to solve convection-diffusion type problems (e.g.,
solving a combination of hyperbolic and parabolic equations similar to our system of equations) considers a similar solution
strategy as in [3]. Basically, they employ an explicit and an implicit discretization for the convection and the diffusion part,
respectively. The whole algorithm is implemented such a way that the explicit part is independent of the implicit loop and
thus nonlinearities remain un-converged.

One way of converging nonlinearities for the radiation hydrodynamics system is to discretize the entire system implicitly.
However, this results in (especially for multidimensional problems) a large nonlinear system of equations. It will be compu-
tationally more costly to solve this system let alone considering additional difficulties coming from the implicit shock cap-
turing [22]. Furthermore, the fully implicit solution would result in a mixed hyperbolic–parabolic system. Our IMEX
approach results in a much simpler parabolic scalar for this problem.

In this study, we introduce a nonlinearly converged IMEX strategy to achieve second order time convergence. The basic
idea is to solve the hydrodynamics equations as part of a nonlinear function evaluation (e.g., when forming the IMEX func-
tion(refer to Section 3.3)) within the JFNK framework. In this way, there is a continuous interaction between the hydrody-
namics (explicit block) and diffusion process (implicit block). In other words, the improved solutions at each nonlinear
iteration (implicit block) are immediately felt by the explicit block, then the improved hydrodynamics solutions are readily
available to form the next set of nonlinear residuals.

We remark that the reason why we choose the JFNK method as the preferred nonlinear solver for our nonlinearly con-
verged IMEX algorithm is based on the fact that forming and storing the Jacobian matrix in a standard Newton method is
often complicated. The complication even gets worse when using a combination of implicit and explicit discretizations.
The JFNK method avoids forming or storing the Jacobian matrices. Therefore, it is our choice of method as the nonlinear sol-
ver in this study.

The organization of this paper is as follows. In Section 2, the governing equations are defined. In Section 3, the numerical
solution procedure is described. Section 3 also includes our modified equation analysis. In Section 4, the computational re-
sults are presented. Section 5 contains our concluding remarks.

2. Governing equations

In this paper, we consider a low-energy density radiation hydrodynamics model (as in [3]) formulated in spherically sym-
metric coordinates.
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where q, u, p, E, and T are the mass density, flow velocity, fluid pressure, total energy density of the fluid, and the fluid tem-
perature, respectively. j is the coefficient of thermal conduction (or diffusion coefficient) and in general is a nonlinear func-
tion of q and T. This simplified radiation hydrodynamics model allows one to study the dynamics of nonlinearly coupling two
distinct physics, compressible fluid flow and nonlinear diffusion. In this study, we will use an ideal gas equation of state, i.e.,
p = RqT = (c � 1)q�, where R is the specific gas constant per unit mass (which is equal to the universal gas constant divided
by the molecular weight of the material), c is the ratio of specific heats, and � is the internal energy of the fluid per unit mass.
Throughout this paper c is set to c ¼ 5

4. The coefficient of thermal conduction is assumed to be written as a power law in
density and temperature, i.e., j = j0qaTb, where j0,a and b are constants [13].

As mentioned in the introduction, a common approach to solve Eqs. (1)–(3) is to split them into two pieces one being the
pure hydrodynamics part (e.g., hyperbolic conservation laws) and the other accounting the effects of radiation transport (e.g.,
diffusion equation). This strategy (also known as operator splitting) is often used by many practitioners to deal with the mul-
tiple physics phenomena [4]. For instance, the pure hydrodynamics equations can be written as
@U
@t
þ @ðAFÞ

@V
þ @G
@r
¼ 0; ð4Þ
where U = (q,qu,E),F(U) = (qu,qu2,u(E + p)), and G(U) = (0,p,0). Then the diffusion equation becomes
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Fig. 1. Flowchart of the second order nonlinearly converged IMEX algorithm.
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Here V ¼ 4
3 pr3 is the generalized volume coordinate in one-dimensional spherical geometry, and A = 4pr2 is the associated

cross-sectional area. Notice that the total energy density, E, obtained by Eq. (4) just represents the hydrodynamics compo-
nent and it must be augmented by Eq. (5).

3. Numerical algorithm

The numerical algorithm we present here consists of an explicit and an implicit block. The explicit block solves Eq. (4). The
implicit block solves Eq. (5). We will briefly describe these algorithm blocks in Sections 3.1 and 3.2. The explicit block is
embedded within the implicit block. In other words, at each nonlinear iteration the explicit block is called as part of a non-
linear function evaluation. This is done to obtain a nonlinearly converged algorithm that leads to second order calculations.
We note that similar discretizations, but without converging nonlinearities, can lead to order reduction in time convergence
[3].

The numerical algorithm is executed as follows. At beginning of each Newton iteration, we have the temperature values
based on the current Newton iterate. This temperature is passed to the explicit block which returns the updated density,
momentum, and a prediction to total energy density. Then we form residuals (e.g., forming the IMEX function) for the dif-
fusion equation out of updated density, velocity, and predicted energy density fields. With the IMEX function in hand, we can
execute the JFNK method. After the Newton method convergences, we get second order converged temperature and total
energy density. We provided a schematic illustration of the algorithm execution in Fig. 1.

We remark that we also successfully tested this IMEX strategy in [8] for coupling neutron diffusion and thermomechanics
in order to simulate transient behavior of fast burst metal reactors. One drawback of this algorithm implementation is that it
is computationally more expensive in comparison to having explicit block independent of the implicit loop. Nevertheless,
with this algorithm, one is able to achieve the second order time accuracy of the numerical scheme.

3.1. Explicit block

Our explicit time discretization is based on a second order TVD Runge–Kutta method [6,7,18,19]. The main reason why we
choose this methodology is that it preserves the strong stability properties of the explicit Euler method. This is important
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because it is well known that solutions to the conservation laws usually involve discontinuities (e.g., shock or contact dis-
continuities) and [6,7] suggest that a time integration method which has the strong stability preserving property leads to
non-oscillatory calculations (especially at shock or contact discontinuities).

A second order TVD Runge–Kutta method for Ut = L(U) can be cast as
U1 ¼ Un þ DtLðUnÞ; ð6Þ

Unþ1 ¼ 1
2

Un þ 1
2

U1 þ 1
2

DtLðU1;�Þ: ð7Þ
Here, we assume U = (q,qu,E) and the operator L represents �(F + G) in Eq. (4). The implicit temperature, i.e., Tk, at each kth
Newton iteration is inserted in L(U1,*) such that E1;� ¼ cvq1Tk þ 1

2 q1ðu1Þ2 where cv ¼ R
c�1 is the fluid specific heat. This pro-

vides the tight nonlinear coupling between the implicit and explicit blocks upon the convergence of the Newton iteration.
The numerical L operator is evaluated based on the Local Lax Friedrichs fluxing procedure [11,22]. For instance, consider the
following spatial discretization of Eq. (4),
U1
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i �
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where DVi = V(ri+1/2) � V(ri�1/2) and Ai±1/2 = A(ri±1/2). Here indices i and i + 1/2 represent cell center and cell edge values,
respectively (refer to Fig. 2). The Local Lax Friedrichs method defines Fi+1/2 as
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1j; jk

R
1j; jk

L
2j; jk

R
2j; jk

L
3j; jk

R
3j

� �
in which k1 = u � c, k2 = u, k3 = u + c, and c is the sound speed. The sound speed is

defined by
c ¼
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where @p
@q ¼ RT in this study. UR

iþ1=2 and UL
iþ1=2 in (9) are the interpolated values at (i + 1/2)th cell edge from the right and left

side, i.e.,
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b ¼ Ui � Ui�1

Dr
: ð14Þ
For more algorithmic details regarding the explicit discretizations of conservation laws, we refer to [11,22].
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3.2. Implicit block

The explicit block, which has been impacted by Tk, produces the following solution vector
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0
B@
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This information is used to discretize Eq. (5) as follows,
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This implicit discretization resembles the so called Crank–Nicolson method [21,20]. When the Newton method converges
the nonlinearities in this discretization (e.g., Eq. (15)), we obtain the fully updated solution vector, i.e.,
U� ! Unþ1 ¼
qnþ1

ðquÞnþ1

Enþ1

0
B@

1
CA
The nonlinear solver used to solve the implicit block is based on the Jacobian-Free Newton Krylov method [10,9].

3.3. The Jacobian-Free Newton Krylov method and forming the IMEX function

The Jacobian-Free Newton Krylov method is the combination of the Newton method that solves a system of nonlinear
equations and a Krylov subspace method that solves the Newton correction equations. With this method, Newton-like
super-linear convergence is achieved in the nonlinear iteration, without the complexity of forming or inverting the Jacobian
matrix from a standard Newton method. The effects of the Jacobian are probed only through approximate matrix-vector
products required in the Krylov iterations. A detailed description of the methodology behind the Jacobian-Free Newton Kry-
lov method is given below.

The Newton method solves F(T) = 0 (e.g., assume Eq. (15) is written in this form) iteratively over a sequence of linear sys-
tem defined by
JðTkÞdTk ¼ �FðTkÞ; Tkþ1 ¼ Tk þ dTk; k ¼ 0;1; . . . ð17Þ
where JðTkÞ ¼ @F
@T is the Jacobian matrix and dTk is the update vector. The Newton iteration is terminated based on a required

drop in the norm of the nonlinear residual, i.e.,
kFðTkÞk2 < tolreskFðT0Þk2 ð18Þ
where tolres is a given tolerance.
The linear system (17) (Newton correction equation) is solved by using the Arnoldi based Generalized Minimal RESidual

method (GMRES) [16] which belongs to the general class of the Krylov subspace methods [14]. We note that these subspace
methods are particularly suitable choice when dealing with non-symmetric linear systems. In GMRES, an initial linear resid-
ual, r0, is defined for a given initial guess dT0,
r0 ¼ �FðTÞ � JdT0: ð19Þ
Here we dropped the index k convention since the Krylov (GMRES) iteration is performed at a fixed k. Let j be the Krylov
iteration index. The jth Krylov iteration minimizes kJdTj þ FðTÞk2 within a subspace of small dimension, relative to n (the
number of unknowns), in a least-squares sense. dTj is drawn from the subspace spanned by the Krylov vectors {r0,Jr0,J2r0,
. . . ,Jj�1r0} , and can be written as
dTj ¼ dT0 þ
Xj�1

i¼0

biðJÞ
ir0; ð20Þ
where the scalar bi minimizes the residual. Notice that each Krylov iteration requires one matrix-vector multiplication and
these iterations are terminated based on a by product estimate of the residual that does not involve explicit construction of
intermediate residual vectors [16]. One particularly attractive feature of this methodology is that it does not require forming
the Jacobian matrix. Instead, only matrix-vector multiplications, Jv, are needed, where v 2 {r0,Jr0,J2r0, . . . }. This leads to the
so-called Jacobian-Free implementations in which the action of the Jacobian matrix can be approximated by
Jv ¼ FðT þ �vÞ � FðTÞ
�

; ð21Þ



3242 S.Y. Kadioglu, D.A. Knoll / Journal of Computational Physics 229 (2010) 3237–3249
where � ¼ 1
nkvk2

Pn
i¼1bjuij þ b;n is the dimension of the linear system and b is a constant whose magnitude is within a few

orders of magnitude of the square root of machine roundoff (typically 10�6 for 64-bit double precision).
Here, we briefly describe how to form the IMEX function F(T). We will refer F(T) as the IMEX function, since it uses the

both explicit (hydrodynamics) and implicit (diffusion) information. Notice that for a method that uses all implicit informa-
tion, F(T) would correspond to a regular nonlinear residual function. The following pseudo code describes how to form F(T)
(we also refer to Fig. 1).

Evaluating F(Tk):
Given Tk where k represents the current Newton iteration.
Call Hydrodynamics block with (qn, un, En, Tk) qn+1, un+1, E* are produced
Form F(Tk) based on the Crank–Nicolson method (Eqs. (15) and (16))

FðTkÞ ¼ ½cvqnþ1Tkþ1
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2
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2
@
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@r

	 

It is important to note that we are not iterating between the implicit block and the explicit block. Instead we are execut-

ing the explicit block inside of a nonlinear function evaluation defined by F(Tk). The unique properties of JFNK allow us to
perform a Newton iteration on this IMEX function, and thus JFNK is a required component of this nonlinearly converged
IMEX approach.

3.4. Modified equation analysis

In this section, we carry out a truncation error analysis to show that our proposed numerical procedure is second order.
First, we consider the explicit block (more precisely, we consider the energy part of Eqs. (6) and (7))
E1 ¼ En � Dt
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2
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; ð23Þ
where � represents the explicitly calculated energy density. Here, we assume that the Newton iteration is already converged,
i.e., Tn+1 = Tk at the kth iterate. Also notice that for simplicity, the spatial derivatives are written in one-dimensional cartesian
coordinates. Substituting Eq. (22) into Eq. (23), we have
E� ¼ En � Dt
2

@
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2
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� Dt
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: ð24Þ
We use the following Taylor series
Tnþ1 ¼ Tn þ Dt
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Now, we insert Tn ¼ T1 � Dt @Tn

@t � Dt2

2
@2Tn

@t2 þ OðDt3Þ in (26) to get
E� ¼ En þ Dt
2

LðEnÞ þ Dt
2

LðE1Þ þ OðDt3Þ; ð27Þ
where LðE1Þ ¼ � @
@x u1 p1 þ cvq1T1 þ 1

2 q1ðu1Þ2
h in o

. Further simplification comes from the following
LðE1Þ ¼ LðEnÞ þ Dt
@L
@t
þ OðDt2Þ: ð28Þ
Substituting (28) into (27), we get
E� ¼ En þ DtLðEnÞ þ Dt2

2
@L
@t
þ OðDt3Þ: ð29Þ
Now, we consider the implicit block (Eq. (15))
Enþ1 � E�
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2
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2
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: ð30Þ
Again, the equation is written in cartesian coordinates for simplicity and we assume that the Newton iteration is already
converged. We consider the following Taylor series



S.Y. Kadioglu, D.A. Knoll / Journal of Computational Physics 229 (2010) 3237–3249 3243
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Using (31), (32), (29), and (25) in (30), the truncation term becomes
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Cancelling the common terms and grouping the other terms together, we get
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This further simplifies by using
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Then we have
sn ¼ Dt
@En
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� LðEnÞ � @
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From the energy equation (e.g., Eq. (3)) we know that @En

@t � LðEnÞ � @
@x jn @Tn

@x

	 

¼ 0, thus (36) becomes sn = O(Dt3). This con-

cludes that our numerical procedure is second order. Given this analysis, we expect that our combined IMEX method will
be second order accurate in time.

3.5. Time step control

The time step control criteria we use here is originally proposed in [15]. The idea is to estimate the dominant wave prop-
agation speed in the problem. In one dimension this involves calculating the ratio of temporal to spatial derivatives of the
dependent variables. In principle, it is sufficient to consider the following hyperbolic equation rather than using the entire
system of the governing equations
@E
@t
þ tf

@E
@r
¼ 0; ð37Þ
where the unknown tf represents the front velocity. This gives
tf ¼ �
@E=@t
@E=@r

: ð38Þ
As noted in [15], to avoid problems from lack of smoothness the following numerical approximation is used to calculate
tf
tn
f ¼

P
ðjEn

i � En�1
i j=DtÞP

ðjEn
iþ1 � En

i�1j=2DrÞ
: ð39Þ
Then the new time step is determined by the Courant–Friedrichs–Lewy (CFL) condition
Dtnþ1 ¼ C
kDrk
tn

f

; ð40Þ
where kDrk uses the L1 norm as in Eq. (39). We can further simplify Eq. (40) by using Eq. (39), i.e.,
Dtnþ1 ¼ 1
2

P
jEn

iþ1 � En
i�1jP

ðjEn
i � En�1

i j=DtÞ
: ð41Þ
We remark that the time steps determined by this procedure is always compared with the pure hydrodynamics time steps
and the most restrictive ones are selected. The hydrodynamics time steps are calculated by
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DtHydro;nþ1 ¼ CFL� Dr
maxijuþ cji

; ð42Þ
where u is the fluid velocity and c is the sound speed (e.g., refer to Eq. (10)). The coefficient CFL is set to 0.5.
Alternative time step control criterion are used for radiation hydrodynamics problems [4]. One commonly used approach

is based on the observation of the maximum relative changes in E. For instance,
Dtnþ1 ¼ Dtn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDE=EÞnþ1

ðDE=EÞmax

s
; ð43Þ
where
DE
E

� �nþ1

¼ maxi
jEnþ1

i � En
i j

Enþ1
i þ E0

 !
; ð44Þ
where the parameter E0 is an estimate for the lower bound of the energy density. Comparing (43) to (41) we observed that
(41) is computationally more efficient. Therefore, we use (41) in our test calculations.
4. Numerical results

4.1. Smooth problem test

In this test, we run the code until a particular final time so that the computational solutions are free of shock waves and
steep thermal fronts. The problem is to follow the evolution of the nonlinear waves that results from an initial total energy
deposition. The initial total energy density is given by
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Fig. 3. Solution profiles resulting from the smooth problem test. The solutions are calculated for tfinal = 0.01 with M = 200 cell points.



−7 −6.5 −6 −5.5 −5 −4.5
−8

−7

−6

−5

−4

−3

log10Δ t

lo
g

10
L 2

( E
rro

r)

Temporal convergence plot for Temperature

Num. Sol
Sec. Order
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Eðr;0Þ ¼ e0 expð�r2=c2
0Þ

ðc0
ffiffiffiffi
p
p
Þ3

; ð45Þ
where c0 is a constant and set to 1/4 for this test. Note that c0 ? 0 gives a delta function at origin. We use the cell averaged
values of E as in [3]. In other words, we integrate Eq. (45) over the ith cell from ri�1/2 to ri+1/2 so that
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Fig. 5. Solution profiles resulting from the weak point explosion test. The solutions are calculated for tfinal = 0.05 with M = 100 cell points.
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g. 7. Solution profiles resulting from the strong point explosion test. The solutions are calculated for tfinal = 0.05145 with M = 400 cell points.
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Ei ¼
e0½erf ðriþ1=2=c0Þ � erf ðri�1=2=c0Þ� � 2pc2

0½riþ1=2Eðriþ1=2Þ � ri�1=2Eðri�1=2Þ�
DVi

; ð46Þ
where the symbol erf denotes the error function. The initial density is set to q = 1/r. The initial temperature is calculated by
using E ¼ cvqT þ 1

2 qu where the initial u = 0. The boundary conditions for the hydrodynamics variables are reflective and out-
flow boundary conditions at the left and right ends of the computational domain, respectively. The zero-flux boundary con-
ditions are used for the temperature at both ends (e.g., @T/@rjr=0 = 0). Finally, the coefficient of thermal conduction is set to
j(T) = T5/2.

We run the code until t = 0.01 with e0 = 100 and 200 cell points. The size of the computational domain is set to 1 (e.g.,
R0 = 1 in Fig. 2). Fig. 3 shows the computed solutions for density, pressure, velocity, and temperature. As can be seen, there
is no shock formation or steep thermal fronts occurred around this time. Fig. 4 shows our numerical time convergence anal-
ysis. To measure the rate of time convergence, we run the code with a fixed mesh (e.g., M = 200 cell points) and different time
step refinements to a final time (e.g., t = 0.01). Then we measure the L2 norm of errors between two consecutive time step
refinements and plot the rate of decrease in these errors. It is clear from Fig. 4 that we established second order time con-
vergence. We remark that [3] does not present second order accurate results for this test.
4.2. Point explosions

In this section, we present our numerical findings for point explosion problems in which shock discontinuities and steep
thermal fronts exist. A detailed problem description can be found in [17,3]. A point explosion is characterized by the release
of a large amount of energy in a small region of space. Depending on the magnitude of the energy deposition, we will have
weak or strong explosions. If the initial explosion energy is not large enough, the diffusive effect is limited to region behind
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Pure hydrodynamics solutions resulting from the strong point explosion test. The solutions are calculated for tfinal = 0.05145 with M = 400 cell points.
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Fig. 9. Temporal convergence plot for the strong point explosion test. tfinal = 0.001 with M = 400 cell points.
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the shock. However, if the explosion energy is large, then the thermal front precedes the hydrodynamics front. These behav-
iors have been observed in our weak and strong explosion tests.

For a weak explosion test, we set e0 = 20 c0 = 1/4 in Eq. (46) with ambient density q = 1 and the coefficient of the thermal
conduction j(T) = T5/2. The problem evolves to the final time t = 0.05 with 100 cell points. The computational domain size is
set to 1 for this and the next test. Fig. 5 depicts the profiles of density, pressure, velocity, and temperature at this time. In this
case, there is shock formation in the solutions near r = 0.9. Notice that the thermal front does not exceed the shock front.
Fig. 6 shows the time convergence analysis. Clearly, we obtained second order accurate results. We note that [3] suffers from
order reduction (i.e., [3] is first order for this test).

Next, we present strong explosion test results. We set e0 = 235c0 = 1/300 in Eq. (46) with q = r�2.111 and jðq; TÞ ¼ T13=2

q2 . No-
tice that the nonlinearity in the coefficient of the thermal conduction is much larger in this test and j now depends on q
which comes from the explicit hydrodynamics. This time we compute the solutions until t = 0.05145 with 400 cell points.
Fig. 7 shows density, pressure, velocity, and temperature profiles. In this case, a hydrodynamical shock is formed around
r = 0.45. The hydrodynamical shock is more apparent when we run the pure hydrodynamics code (e.g., neglecting the heat
conduction term in Eq. (3). Refer to results in Fig. 8). At this time (t = 0.05145), the thermal front (located near r = 0.9) prop-
agates faster than the hydrodynamical shock due to large initial energy deposition. Fig. 9 shows the time convergence anal-
ysis. Again, we obtained second order convergence.

5. Conclusion

We have presented a new JFNK-based implicit/explicit time integration technique for solving hydrodynamics plus non-
linear heat conduction problems (e.g., radiation hydrodynamics in the low-energy density diffusion limit). The key to imple-
ment our nonlinearly converged implicit/explicit algorithm is to carry the explicit integration as part of a nonlinear function
evaluation within the implicit block. This way, the improved time accuracy of the nonlinear iteration is readily felt by the
explicit block and vice versa. We have performed a modified equation analysis (truncation error analysis) to show that
our proposed numerical method is second order. Clearly, our numerical results verify that we have obtained second order
time convergent calculations. The algorithm is tested for only low-energy radiation hydrodynamics problems. The extension
to the high-energy radiation hydrodynamics is currently being investigated and the outcome will be presented in a separate
journal paper. Additionally, we expect there are other multiple time scale nonlinear systems where this JFNK-based IMEX
algorithm can make a positive impact.
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